Reg No.:	Name:
<u> </u>	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: EC204

Course Name: ANALOG INTEGRATED CIRCUITS

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

Marks

- 1 a) With the help of a circuit diagram explain the working of a differential amplifier if the following inputs are applied (i) V_{b1} =0V, V_{b2} =1V (ii) V_{b1} =1V, V_{b2} =1V (iii) V_{b1} =-1V, V_{b2} =1V
 - b) List out the ideal characteristics of an op.amp. (3)
 - c) Design the circuits to obtain the following output, V_o . (i) V_o = (5 V_1) (8) (ii) V_o = V_1 + $2V_2$ (iii) V_o = $-\frac{V_1+V_2+V_3}{3}$ (iv) V_o = - $2V_1$ - $5V_2$
- 2 a) For a differential amplifier, find the value of v_{id} to cause i_{E2} = 0.98I where v_{id} = (4) v_{B1} v_{B2} and I is the tail current.
 - b) Draw the block diagram and equivalent circuit of an operational amplifier. (3)
 - c) With the help of a neat circuit diagram, derive the equation for the output voltage (8) of an Instrumentation amplifier.
- 3 a) With the help of a circuit diagram, derive the equation for Input differential (4) resistance of a differential amplifier.
 - b) Explain the openloop configurations and voltage transfer curve of an ideal opamp. (3)
 - c) Explain the following properties of a practical opamp (i) Bandwidth (ii) Slew rate (8) (iii) Input offset voltage (iv) Input offset current

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) With the help of circuit diagram and relevant equations, explain the disadvantages (4) of a differentiator. How are the disadvantages removed in a practical differentiator?
 - b) With the help of circuit diagrams and graphs, explain the working of a Full wave (3) Precision rectifier.
 - c) Design a Schmitt Trigger with hysteresis width, $V_H = 2V$. Assume $\pm V_{sat} = \pm 14V$. (4)
 - d) Design a second order Butterworth Low Pass Filter with f_H = 2KHz (4)

- 5 a) With the help of a circuit diagram, derive the equation for load current I_{L} , for a V to I converter with grounded load.
 - b) Derive the equation for frequency of oscillation (f_0) of a Wein Bridge oscillator. (6) Design a Wein Bridge oscillator for $f_0 = 1$ KHz.
 - c) Derive the equation for the transfer function of a first order wide Band Pass filter. (6) Design a first order wide bandpass filter with $f_H= 2KHz$ and $f_L= 500~Hz$
- 6 a) Draw the circuit of a log amplifier with temperature compensation and derive the equation for its output voltage. (7)
 - b) Derive the equation for frequency of oscillation for a square-triangular waveform (8) generator.

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) With the help of circuit diagram, internal functional diagram and relevant graphs, (10) explain the working of a Monostable Multivibrator using IC555.
 - b) With the help of a circuit diagram and truth table, explain the working of a Flash (10) type ADC.
- 8 a) With the help of circuit diagram and internal diagram, explain the working of a (10) Low Voltage Regulator using IC723.
 - b) With the help of a circuit diagram explain the working of a Dual slope ADC. (10)
- 9 a) With the help of block diagram explain the working of PLL. Explain any two (10) applications of PLL.
 - b) The basic step of a 9bit DAC is 10mV. If 000000000 represents 0V, what output is produced if the input is 110011001?
 - c) Define the following terms with respect to DAC (i)Resolution (ii)Linearity (iii) (5) Full scale output voltage (iv) LSB (v)MSB
